677 research outputs found

    Proper Motions of PSRs B1757-24 and B1951+32: Implications for Ages and Associations

    Full text link
    Over the last decade, considerable effort has been made to measure the proper motions of the pulsars B1757-24 and B1951+32 in order to establish or refute associations with nearby supernova remnants and to understand better the complicated geometries of their surrounding nebulae. We present proper motion measurements of both pulsars with the Very Large Array, increasing the time baselines of the measurements from 3.9 yr to 6.5 yr and from 12.0 yr to 14.5 yr, respectively, compared to previous observations. We confirm the non-detection of proper motion of PSR B1757-24, and our measurement of (mu_a, mu_d) = (-11 +/- 9, -1 +/- 15) mas yr^{-1} confirms that the association of PSR B1757-24 with SNR G5.4-1.2 is unlikely for the pulsar characteristic age of 15.5 kyr, although an association can not be excluded for a significantly larger age. For PSR B1951+32, we measure a proper motion of (mu_a, mu_d) = (-28.8 +/- 0.9, -14.7 +/- 0.9) mas yr^{-1}, reducing the uncertainty in the proper motion by a factor of two compared to previous results. After correcting to the local standard of rest, the proper motion indicates a kinetic age of ~51 kyr for the pulsar, assuming it was born near the geometric center of the supernova remnant. The radio-bright arc of emission along the pulsar proper motion vector shows time-variable structure, but moves with the pulsar at an approximately constant separation ~2.5", lending weight to its interpretation as a shock structure driven by the pulsar.Comment: LaTeX file uses emulateapj.cls; 7 pages, 4 figures, to be published ApJ February 10, 2008, v674 p271-278. Revision reflects journal formatting; there are no substantial revision

    Giant lasing effect in magnetic nanoconductors

    Full text link
    We propose a new principle for a compact solid-state laser in the 1-100 THz regime. This is a frequency range where attempts to fabricate small size lasers up till now have met severe technical problems. The proposed laser is based on a new mechanism for creating spin-flip processes in ferromagnetic conductors. The mechanism is due to the interaction of light with conduction electrons; the interaction strength, being proportional to the large exchange energy, exceeds the Zeeman interaction by orders of magnitude. On the basis of this interaction, a giant lasing effect is predicted in a system where a population inversion has been created by tunneling injection of spin-polarized electrons from one ferromagnetic conductor to another -- the magnetization of the two ferromagnets having different orientations. Using experimental data for ferromagnetic manganese perovskites with nearly 100% spin polarization we show the laser frequency to be in the range 1-100 THz. The optical gain is estimated to be of order 10^7 cm^{-1}, which exceeds the gain of conventional semiconductor lasers by 3 or 4 orders of magnitude. A relevant experimental study is proposed and discussed.Comment: 4 pages, 3 figure

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2↔_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state ∣n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200

    A Proper Motion for the Pulsar Wind Nebula G359.23-0.82, "the Mouse," Associated with the Energetic Radio Pulsar J1747-2958

    Full text link
    The "Mouse" (PWN G359.23-0.82) is a spectacular bow shock pulsar wind nebula, powered by the radio pulsar J1747-2958. The pulsar and its nebula are presumed to have a high space velocity, but their proper motions have not been directly measured. Here we present 8.5 GHz interferometric observations of the Mouse nebula with the Very Large Array, spanning a time baseline of 12 yr. We measure eastward proper motion for PWN G359.23-0.82 (and hence indirectly for PSR J1747-2958) of 12.9+/-1.8 mas/yr, which at an assumed distance of 5 kpc corresponds to a transverse space velocity of 306+/-43 km/s. Considering pressure balance at the apex of the bow shock, we calculate an in situ hydrogen number density of approximately 1.0(-0.2)(+0.4) cm^(-3) for the interstellar medium through which the system is traveling. A lower age limit for PSR J1747-2958 of 163(-20)(+28) kyr is calculated by considering its potential birth site. The large discrepancy with the pulsar's spin-down age of 25 kyr is possibly explained by surface dipole magnetic field growth on a timescale ~15 kyr, suggesting possible future evolution of PSR J1747-2958 to a different class of neutron star. We also argue that the adjacent supernova remnant G359.1-0.5 is not physically associated with the Mouse system but is rather an unrelated object along the line of sight.Comment: 8 pages, 4 figures, emulateapj format. Accepted for publication in The Astrophysical Journa

    VirtuWind: Virtual and programmable industrial network prototype deployed in operational wind park.

    Get PDF
    With anticipated exponential growth of connected devices, future industrial networks require an open solutions architecture facilitated by standards and a strong ecosystem. Such solutions should also deal with range of quality of service requirements imposed by industrial networks. Preserving strict quality of service is particularly challenging when services pass across domains of multiple provides. VirtuWind aims to develop and demonstrate a Software Defined Networking and Network Function Virtualization ecosystem, based on an open, modular and secure framework to address stringent requirements of the industrial networks. A prototype of the framework for intra-domain and inter-domain scenarios will be showcased in real Wind Parks, as a representative use case of industrial networks. This paper details this vision and explains steps forward

    Quantum state engineering on an optical transition and decoherence in a Paul trap

    Get PDF
    A single Ca+ ion in a Paul trap has been cooled to the ground state of vibration with up to 99.9% probability. Starting from this Fock state |n=0> we have demonstrated coherent quantum state manipulation on an optical transition. Up to 30 Rabi oscillations within 1.4 ms have been observed. We find a similar number of Rabi oscillations after preparation of the ion in the |n=1> Fock state. The coherence of optical state manipulation is only limited by laser and ambient magnetic field fluctuations. Motional heating has been measured to be as low as one vibrational quantum in 190 ms.Comment: 4 pages, 5 figure

    Calculations of the A_1 phonon frequency in photoexcited Tellurium

    Get PDF
    Calculations of the A_1 phonon frequency in photoexcited tellurium are presented. The phonon frequency as a function of photoexcited carrier density and phonon amplitude is determined. Recent pump probe experiments are interpreted in the light of these calculatons. It is proposed that, in conjunction with measurements of the phonon period in ultra-fast pump-probe reflectivity experiments, the calculated frequency shifts can be used to infer the evolution of the density of photoexcited carriers on a sub-picosecond time-scale.Comment: 15 pages Latex, 3 postscript figure

    Dirac-Foldy term and the electromagnetic polarizability of the neutron

    Get PDF
    We reconsider the Dirac-Foldy contribution μ2/m\mu^2/m to the neutron electric polarizability. Using a Dirac equation approach to neutron-nucleus scattering, we review the definitions of Compton continuum (αˉ\bar{\alpha}), classical static (αEn\alpha^n_E), and Schr\"{o}dinger (αSch\alpha_{Sch}) polarizabilities and discuss in some detail their relationship. The latter αSch\alpha_{Sch} is the value of the neutron electric polarizability as obtained from an analysis using the Schr\"{o}dinger equation. We find in particular αSch=αˉ−μ2/m\alpha_{Sch} = \bar{\alpha} - \mu^2/m , where μ\mu is the magnitude of the magnetic moment of a neutron of mass mm. However, we argue that the static polarizability αEn\alpha^n_E is correctly defined in the rest frame of the particle, leading to the conclusion that twice the Dirac-Foldy contribution should be added to αSch\alpha_{Sch} to obtain the static polarizability αEn\alpha^n_E.Comment: 11 pages, RevTeX, to appear in Physical Review
    • …
    corecore